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Abstract

In this work we demonstrate that the Mizuno-Todd-Ye predictor-
corrector primal-dual interior-point method for linear programming
generates iteration sequences that converge to the analytic center of
the solution set.

1 Introduction and Preliminaries

The basic primal-dual interior-point method for linear programming was orig-
inally proposed by Kojima, Mizuno, and Yoshise [6] based on earlier work
of Megiddo [11]. This algorithm can be viewed as perturbed (centered) and
damped Newton’s method applied to the first order conditions for a particu-
lar standard form linear program. They established linear convergence of the
duality gap sequence to zero and an iteration complexity of O(nL) for their
basic algorithm. Immediately Kojima, Mizuno, and Yoshise in a second paper
[7], and Monteiro and Adler [15] proposed algorithms that fit in the original
Kojima-Mizuno-Yoshise framework and established linear convergence of the
duality gap sequence to zero and a superior iteration complexity of O(y/nL)
for their versions of the algorithm. Soon after Mizuno, Todd and Ye [14]
considered a predictor-corrector variant of the Kojima-Mizuno-Yoshise ba-
sic algorithm. In their algorithm the predictor step is a damped Newton
step and the corrector step is a perturbed (centered) Newton step. Mizuno,
Todd, and Ye also established linear convergence of the duality gap sequence
to zero and an iteration complexity of O(y/nL) for their predictor-corrector
algorithm.

The literature now abounds with papers concerned with issues related to
primal-dual interior-point methods. Moreover, when we discuss convergence
or convergence attributes (including complexity) of one of these algorithms
we are in general discussing convergence of the duality gap to zero. This in-
terpretation has become standard in the area even though convergence of the
duality gap sequence does not imply convergence of the iteration sequence.
The convergence of the iteration sequence is certainly an important issue in
its own right. Indeed, the earlier works on fast (superlinear) convergence
of the duality gap sequence to zero, i.e., Zhang, Tapia, and Dennis [26],
Zhang, Tapia and Potra [27], Zhang and Tapia [23], Ye, Tapia, and Zhang



[21], and McShane [10], all made the assumption that the iteration sequence
converged.

In some applications, e.g. see Charnes, Cooper, and Thrall 2], it is
important to obtain a solution that is not near the boundary of the solution
set. Hence there is significant value in designing a primal-dual interior-point
method for linear programming that converges to the analytic center of the
solution set.

Tapia, Zhang, and Ye [17] derived conditions under which the iteration
sequence generated by the Kojima-Mizuno-Yoshise primal-dual interior-point
method converged. These conditions were essentially the conditions for fast
(superlinear) convergence established by Zhang, Tapia, and Dennis [26] (see
also Zhang and Tapia [24]). Zhang and Tapia [25] derived conditions under
which this iteration sequence converged to the analytic center, assuming
that the sequence converged. However, these conditions are not completely
compatible with the Tapia-Zhang-Ye conditions for the convergence of the
iteration sequence.

Ye, Giiler, Tapia, and Zhang [20], and independently Mehrotra [13], based
on the work of Ye, Tapia, and Zhang [21], demonstrated that the Mizuno-
Todd-Ye predictor-corrector algorithm in all cases gives quadratic conver-
gence of the duality gap sequence to zero. A highlight of this contribution
was that the assumption of iteration sequence convergence was not needed
(for the first time). Soon after Zhang and Tapia [24] removed this assumption
from the Zhang-Tapia-Dennis theory for superlinear convergence. Quite re-
cently Zhang and El-Bakry [22] were able to show that a modified version of
the Mizuno-Todd-Ye predictor-corrector algorithm had the property that the
iteration sequence that it generated converged to the analytic center. Their
modified algorithm dynamically chose the steplength in the Newton predictor
step so that the corrector step would asymptotically enforce arbitrary close
proximity to the central path.

In this paper we show that the predictor-corrector algorithm as originally
stated by Mizuno, Todd, and Ye has the property that the iteration sequences
(predictor-step sequence and corrector-step sequence) it generates converge
to the analytic center of the solution set.

The paper is organized as follows. In the remainder of this section we
introduce our notation and several fundamental background notions. In Sec-
tion 2 we discuss the primal-dual Newton step and establish some properties
concerning this step. Some mathematical tools concerning projections and
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scalings are derived in Section 3. Central path issues are discussed in Section
4. The Mizuno-Todd-Ye predictor-corrector algorithm and some of its prop-
erties are presented in Section 5. In Section 6 we combine all our previous
discussion and in Theorem 6.1 demonstrate that the Mizuno-Todd-Ye algo-
rithm generates sequences that converge to the analytic center of the solution
set.

Given a vector z,d, ¢, the corresponding upper case symbol denotes (as
usual) the diagonal matrix X, D, ® defined by the vector.

We denote component-wise operations on vectors by the usual notations
for real numbers. Thus, given two vectors u,v of the same dimension, uv,
u/v, etc. denotes the vectors with components w;v;, u;/v;, etc. This notation
is consistent as long as component-wise operations are given precedence over
matrix operations. Note that uv = Uv and if A is a matrix, then Auv = AUv,
but in general Auv # (Au)v.

We frequently use the O(:) and §)(-) notation to express a relationship
between functions. Our most common usage will be associated with a se-
quence {z*} of vectors and a sequence {y*} of positive real numbers. In this
case © = O(u), or ¥ = O(y*), means that there is a constant K (depen-
dent on problem data) such that for every k € IV, ||«*|| < Ku*. Similarly,
x = Qp), or ¥ = Q(p*), means that there is € > 0 such that for every
ke N, ||zF|| > ept.

The primal and dual linear programming problems are:

minimize ¢’z
(LP) subject to Ar = b
x = 0,
and
maximize by
(LD) subject to ATy + s c

VAT

8 3

where ¢ € IR", b € IR, A € IR"*". We assume that both problems have
optimal solutions, and that the sets of optimal solutions are bounded. This is
equivalent to the requirement that both feasible sets contain points satisfying
all inequalities strictly.



Given any feasible primal-dual pair (&, §), the problems can be rewritten

as
minimize §%x
(LP) subject to  Ax = b
x > 0,
and
minimize #7Ts
(LD) subject to Bs = Bec
s = 0,

where BT is a matrix whose columns span the null space of A. Popular
choices for BT are an orthonormal basis for the null space of A and B = Py,
the projection matrix into the null space of A.

The feasible sets for (LP) and (LD) will be denoted respectively by P
and D. Their relative interiors will be respectively P® and DY.

The set of optimal solutions for the primal-dual pair of problems con-
stitutes a face ' = Fp x Fp of the polyhedron of feasible solutions, where
Fp and Fp are respectively the primal and dual optimal faces. By hypoth-
esis, this face is a compact set. It is well known that this face is char-
acterized by a partition {B, N} of the set of indices {l,...,n} such that
Fp={2e€Play =0} and Fp = {s € D | sg = 0}. In the relative interior
of the face, g > 0 and sy > 0.

We study algorithms that generate sequences that converge to the optimal
face. Our main concern is with the behaviour of the iterates as they approach
the optimal face. We want this to happen in such a manner that all limit
points are in the relative interior of the optimal face. We shall see later on
how this condition can be enforced.

Given p > 0, o € IR, the pair (x,s) of feasible primal and dual solutions
is the central point (x(u), s(y)) associated with p if and only if

rs = e,

where e stands for the vector of all ones, with dimension given by the context.
The central path is the curve in IR*™ parametrized by the positive real p,
le.,

ps (o), s(n)):



Thus (z,s) is a central point if and only if

xs = pe
Axr = b
Bs = Be (1)
x,s > 0,

where the columns of BT span the null space of A.
The first-order or Karush-Kuhn-Tucker (KKT) conditions for problem
(LP) (or (LD)) are

rs = 0

Ax = b

ATy +s = ¢
x,s 2> 0.

The perturbed KKT conditions, for perturbation parameter g > 0, are

rs = pe
Ar = b

AT?/ + S — c (2)
x,s > 0.

Observe that the perturbed KKT conditions are merely the defining re-
lations for the central path and (2) can equivalently be written as (1). Es-
sentially all primal-dual interior-point methods for problem (LP) consist of
some variant of the damped Newton method applied to the perturbed KKT
conditions (1) or (2).

2 Newton Steps

When dealing with an iterative procedure we will use the superscript 0 to
denote the previous iterate, no superscript to denote the current iterate, a
subscript of + to denote the subsequent iterate. In two-step algorithms like
the Mizuno-Todd-Ye algorithm described in Section 4 this notation will apply
to the current iterate, the intermediate iterate, and the final iterate.

Given a strictly feasible pair («, s), we shall define three parameters:

p(x,s) = sTz/n,
w(x,s) = sc/p(z,s),

d(x,s) = 1/y/w(x,s).
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The first two parameters will be extensively studied below. The parameter
¢ has no special meaning, and is introduced because it will simplify many
formulas in the text. When no confusion can arise, we drop the reference to
the variables, and continue to use other symbols in a consistent manner. For
example w = w(Z, §) or ¢° = ¢(a?, s").
Given a strictly feasible pair (x, s), we are interested in finding (z %, s1) =

(z,8) + (u,v) that solves ( ) or (2) with y = yu(z, s), where v € [0,1]. The
Newton equation for (1) at («,s) with p replaced by vt can be written

av+su = —zs+yu(z,s)e
T N(A) (3)
v € R(AT).

where as usual A denotes null space and R denotes range space. The solution
of (3) is obtained by scaling the equations. Define the scaling matrix by

=+/z/s, D = diag(d,,...,d,), and the scaling
(p,q) = (5,9) = (d"'p,dq)

for general (p,q) € (IR* x IR").

The relationship between d and the vector ¢ defined above is

q T xd _ N (4)

s VR sp

When applied to the original pair (z, s), the resulting scaled pair will be
(%,5) = (Vs Vxs). (5)

After scaling, the system (3) becomes

T+ su = —TS+ yue
w € N(AD) (6)
v € R(DAT).

Since T > 0, the first equation can be multiplied by 77!, leading to

v+u=—5+ ')/,u:i'"l,



and the solution is simply the orthogonal decomposition of the vector —s +
ypz~! along N(AD) and its orthogonal complement. Let Pap be the pro-
jection matrix into N (AD), and Pap = I — Pap:

u = Puap(—5+yuz™?) (M)
v = PAD(—§+’)//L(E_1).

The Newton step in original coordinates is given by u = dii and v = d~'%.
A convenient formulation is obtained by substituting d = Lﬂzqﬁ and d™! =

. Vi
ﬁ8¢.
u = wdPsxed (— %j + ’ye)
~ 0o ®)
v = s¢Paxe¢ (— P + ’Y€>

We now describe two alternative ways of writing the expression for u (the
expressions for v are similar).
Using the definition of w,

u=—cdPaxap(w — ve), (9)

Observing the symmetrical formulation of (LD), we see that for any two
feasible dual slacks s!, s, Pypds! = Pypds® = Pypdc. In particular, we can
choose a fixed dual slack and use it in (7). We shall choose s*, the analytic
center of the dual optimal face, and write

u = —dPypd(s* —ypx").
By the same process as above,

TS

u=—x¢Pixsd ( i — ’ye) . (10)

]
H

In Section 5 when we study the Mizuno, Todd, and Ye predictor-corrector
algorithm, we will have need for the following proposition.

Proposition 2.1 Let (i,38) and (x,s) be feasible pairs. Consider z+ = 2+ u
and st = s+ v where (u,v) satisfies
Fv+ su= (1 —4)xs + jie
uw € N(A)
v € R(AT) .



Then
plat,ot) = u(z,s) + 4 . (11)

Proof. Left multiplying by ¢, we obtain
o+ 5Tu=—(1 =A)ats+nji.

From the definition
T
et st =als + atv 4 sTu ,

since uTv = 0. But #Tv = 2Tv, because & — 2 € N(A) and v € R(AT), and
similarly 87u = sTu. Substituting in the expressions above we immediately
obtain (11). |
Two special cases of problem (3) have been studied extensively in the
literature. They are
(1) v = 0: The resulting directions (h},hl) are called the primal-dual affine
scaling directions (or pure Newton directions).
(1) ¥ = 1: The resulting directions (h2,h?) are called the constant gap
centering directions.
The first equation of the Newton system (3) can be rewritten as

v+ su = —(1 —y)xs + y(—zs + pe). (12)
This is a combination of the solutions of two systems with

:I,'Ul-l-S’ll,l = —Is

xv? + sut = —us + pe,

(13)

where ¢ = p(z,s). The complete solution is given by

(1,0) = (1 = 9)(u",0") + 7(u?, v2). (14)

It is quite common to use these two directions separately, possibly as a way
to simplify the analysis. This is done by the predictor-corrector algorithms
that we study in this paper.

3 Mathematical Tools

In this section we state some lemmas on projections and scalings that will
be useful in the analysis below.
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3.1 Properties of Scaled Projections

In this subsection we slightly extend results published by Megiddo and Shub
[12].
Consider the primal feasible set for (LP),

P={zeR"| Az =b,a >0}
and the map h defined for d € IR*, d > 0, d # 0, and p € IR" by

((]’7 ,0) = h(dv P) = Papp, (15)

where P4p represents the projection matrix into the null space of AD.

We study the behaviour of this map when d > 0,d — d and p — p, where
d>0,d+#0,and p € R".

Given d, we define the index sets B = {i = 1,...,n | d; > 0} and
N ={i =1,...,n | di = 0}. The variables with indices in B are called
the large variables, and the others small variables. It is difficult to describe
the behaviour of the small variables hy(d, p) of the scaled projection defined
above; the theory of Megiddo and Shub concerns the large variables hg(d, p).
We shall describe these results conveniently extended to fit our needs.

By definition of projection, i(d, p) solves the problem

minimize ||hy — pn||* + ||hs — pBI|*

. 1
subject to AgDpghp = —ANDnhy. ( 6)
Assume now that hy(d, p) is given. Then hg(d, p) solves
minimize ||hp — ps|| (17)
subject to ABDBhB = —ANDN}ZN((Z, [))

Thus, since hn(d, p) is finite and Dy = 0, hp(d,p) = P4, p,pe. We shall
study the point-to-set mapping 6 defined for d € IR} and p € IR" by

d(d,p) — 0(d,p) = {hg € RP'| AgDphp = —AyDnhy(d,p)},  (18)

near a pair (d,p) € IR} x IR" and d # 0. Note that at this point, 8(d, p) =
N(ApDg).

Lemma 3.1 The point-to-set map defined by (18) is continuous at (d,p) €
IR} x IR" and d # 0.
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Proof.

(i) Upper semi-continuity: Consider a sequence (d*, p¥) — (d, p) and h%
such that AgDghk = —ANDNhN(d ,p*) and k% converges to some point
hs. We must prove that AgDghg = 0.

The sequence hy(d*, p¥) is bounded, because ||hn(d*, p*)|| < ||p* ||, since
h(d¥, p*) is a projection. Hence AgD% /7B — 0 and consequently AgDphp =
0, completing this part of the proof.

(i) Lower semi-continuity: Consider now an arbitrary point kg € N (ApDg).
Given an arbitrary sequence (d¥, pF) € IR" x IR" and such that (d*,p;) —
(d p) we must construct hfy such that AgDEhY = ~AnD%hy(dF, p*) and
h — hB

Consider (d¥, p¥) € € IR} x IR" and (d*, p*) — (d, p). Since d — dp > 0 we
lose no generality by assuming that df > 0 for all k. Define hk hn(d*, p*).

For each k let h’C be a minimum-norm solution of ABDBhB = —AND’C h’C
where the norm is the weighted Euclidean norm || D% - ||. If A% denotes the
pseudo-inverse of Ap, then we can write b = —DY VAL DX BE. Tt follows

that h’c — 0, since d —dg > 0 and Dk h”C — 0. Construct
hY = (DE) ' Dghp + bk, (19)

Then ) )
ApDyhf, = ApDphp + ApDERY, = — AN D% BE

since hg € N(ABDB). Thus_h% € 6(d*, p*). Since DYy — Dp > 0 and
h% — 0, it follows that h% — &g, completing the proof. |

Lemma 3.2 Let h(d, p) be given by (15). Consider (d, p) € IR x R",d # 0,
and (d*, p*) € R x x IR™ such that (d*, p*) — (d, p). Then

(1) thk,/’ ) - hB(d’ ﬁ) = PAEDﬁB'

(i) If py = 0, then hy(d*, pF) = 0.

Proof. (i) The map (d, p) — argmin{||hp — pB|| hg € 0(d,p)} is well
defined by the uniqueness of the minimizer. It is continuous at (d,p) as a
consequence of the continuity of the point-to-set map # and the continuity
of projections (see for example Hogan [4]). From the comment immediately
preceding (17) we see that

hu(d*, p*) = argmin{||hp — p& || : hp — pk|| : hp € o(d*, p*)} .

11



Hence from continuity hp(d*, p*) — hp(d, ). From the comment immedi-
ately following (17) we see that hp(d,p) = P, p.pp. This establishes part

(1)-
(ii) Here we follow a similar proof in Megiddo and Shub [12]. Assume
that gy = 0 and by contradiction that for some sequence d* — d, p* — j we

have hy(d*, p*) — hy # 0. Define ¢ = ||hy]|* > 0. We have:
IB(d*, p*) = p*11% = lhs (¥, p*) = pBII* + Il (d*, p*) = P
By (i), hp(d*, p*) — hp, where hg = P,,.p,pp. For sufficiently large k,
lhs(d*, %) — p5l1* > Ilhs — palf* — ¢/2. (20)
Now construct the following sequence:
B = (DY) Dphs . B =0,

It follows that h% — hg, and h* € N'(AD*), since AD¥h*¥ = AgDghp = 0.

Comparing this with (20), we have for k sufficiently large ||h* — p*|| <

||h(d*, p*)—p*|| and h* € N'(AD*), contradicting the definition of h(d*, p*) =
P4prp® and completing the proof. [ |

3.2 Shifted Scalings

This subsection contains some useful consequences of scalings on projections
and norms. The first lemma concerns projections and slightly shifted scalings.

Lemma 3.3 Let ¢ € IR" be such that ||q — ||, < a, where a € (0,0.25),
and consider the projections h = Pap, h = qPagqp. Then ||h — h|| < 3a||iz||.

Proof. Note that since p = h + ATw for some w € R™,

gp = qh + (AQ)Tw

and thus
Pagap = Pagqh

It follows that
¢ 'h = Pagqh

12



On the other hand, by definition of projection,
gh = Pagqh +y,
where y € R(QAT). Merging the last expressions, we get
gh=q"'h+y,

where ¢7'h € N(AQ) and y € R(QAT). Subtracting ¢ h e N(AQ) from
both sides, ) )
(' =h=q"(h—h)+y,

and from the orthogonality of the right-hand side terms,
g™ = )Rl = llg™ (k= B)]I.

_Now use the following facts: ||(h — W< Nalloollg™(h = R)|| and ||(¢~ =
Ohll < (g7 = @)llcol[2]]- Combining these three expressions leads to

1h = 2l < Nlalleclla™ = alleollB].

But ||¢]looll¢™ = ¢llee < (1 + @) ( L (1- a)) < 3a which is easily verified

1—a

for a € (0,0.25), completing the proof. |
Our second lemma concerns scaled norms. Given a vector @ € IR% , , the
following map defines a norm:

h € R" — ||h|l. = ||z7 h]|.

This is the Euclidean norm of the vector corresponding to h after a scaling
h = 2~'h. This norm is very usual in interior point methods, because it
characterizes the proximity from a point to a central point in the following
sense: let z(u) be the primal central point associated with the parameter
p> 0. If Jle — a(p)lls < 6 < 1 then a Newton centering iteration from z
produces an efficient centering step (which is usually imprecisely stated as
being in the region of quadratic convergence of Newton’s method).

In the same fashion we defined the scaled Euclidean norm ||k||, we define
the scaled norm ||||2°. The following lemma relates the scaled norms for
different reference points.

13



Lemma 3.4 Considerx,y € R}, , h € R*, a € (0,1). If either ||z —y|[>° <

aor |z -yl < a, then

1
1Al < 1= a”h”y
Proof. To begin with
h yh Y
Rl =1—l == <II= hll,.
Il = =) =[] <2 e,

If ||z —y||$° < a, then |(z; — y;)/@;| < @, or 1 — y;/x; > —a, which implies
yi/t; < 14+a < 1/(1—a). In the other case, |(zi—yi)/yi] < @,0r 2;/y; > 1—a,
which implies y;/2; < 1/(1 — «), completing the proof. [

4 Trajectories, Centrality and Proximity

The primal-dual central path defined above is contained in the set of interior
points and ends at a point («*,s*) in the relative interior of the optimal
face. This point is the analytic center of the face. See problem (24) for an
equivalent characterization. For more detail see McLinden [9] and Sonnevand
(16].

In this section we study (primal-dual) proximity criteria that describe
how far a pair (z, s) is from the primal-dual central path, then study (primal)
proximity criteria to evaluate how far a point in the optimal face is from its
analytic center.

4.1 Primal-Dual Proximity

Given an interior pair (z,s) and a parameter u > 0 (not necessarily equal to
p(z,s)), the proximity of (x,s) in relation to (x(u),s(u)) is measured by
s

6x. s =
(x, 5, 1) p

—cfl .

(21)

When p = p(w, s), this is the proximity with relation to the central path,

x€s

p(w,s)

8(x,s) =

—€

= |lw(z,s) — €| . (22)

14



Let us compute the proximity at the pair (z%,s) resulting from the
Newton step described in (3), with ¢ = p(x,s). We have

xTst = (x +u)(s+v)
= &8s+ xv 4+ su+ uv

= ypue + uv.
But p(at,s7) = yp from (?7), and thus

atst U

plat, st) ‘= p(at,st)’

uv U

vil o (et st)
A fundamental result on the effect of the Newton step on proximity is given

in the following lemma. This result is due to Mizuno, Todd, and Ye and can
be found in [14].

§(zt,st) = = ) (23)

Lemma 4.1 Consider an interior pair (x,s) and a parameter ut > 0. If

§(z,s,pu%) =6 <0.5, then §(a*,st) < 62/V/2.

The primal-dual affine-scaling directions are the solution of (3) with v =
0. These directions associated with each interior feasible pair (z, s) generate
a continuous vector field, which extends continuously to the boundary.

This vector field was thoroughly studied by Adler and Monteiro [1], who
describe the trajectories generated by it and the derivatives of these trajec-
tories. The trajectories are parameterized by g, and there is one trajectory
passing through each interior pair («, s).

For each interior pair (&, s), we defined the vector w(z,s) = xs/u(x,s).
Each trajectory is associated with this vector in the following two ways:

(i) The trajectory associated with w > 0 is composed of the pairs (z, s)
such that

€Zrs
p(x,s)

In particular, the central path is the trajectory associated with w = e.

= w.



(i1) The trajectory associated with w > 0 is composed of the minimizer
pairs of the parameterized primal-dual penalized function

T i
aTs — J Z w;lna; — p Z w; In s;.
i=1 =1

Each trajectory is composed of interior points, and ends in the relative inte-
rior of the optimal face.

In what follows, we assume that the vectors w(z, s) are always in a com-
pact set defined by
|w(z,s) — €] <«

where a € (0,1).

When the weight vectors w are in a compact set bounded away from
the boundary of the positive orthant, the trajectories end in the relative
interior of the optimal face. Specifically at the limit of the minimizers of the
parameterized barrier function, we have

«*(w) = argmin {— > w;lne; |z € Fp}
€B
s*(w) = argmin {— ) wilns; |z € Fp}.
€N
In particular, the central path ends at the analytic center of the optimal face
(2%, 5%) = (a(€), s°(€)).

The sets of end points of all trajectories for such weights w are sets of
minimizers of parameterized continuously differentiable functions, and are
compact. It 1s easy to see that the nonzero variables are all bounded away
from zero, because the compact sets are in the relative interior of the optimal
faces. This is also clear from the fact that the barrier functions become
arbitrarily large as the boundaries of the faces are approached.

Similarly, all the trajectories in the bundle associated with this compact
set of parameter vectors are in the relative interior of the feasible set, and
bounded away from the non-optimal faces.

4.2 Primal Proximity

We shall summarize some facts about the analytic center of a polytope, and
derive properties of descent methods for finding the center.
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Consider the primal centering problem

minimize p(z) = —Y 5~ In(x;)
subject to Az = b (24)
r > 0,

where b € IR™, A € IR™*™, such that its feasible region, SY, is nonempty,
with compact closure S. The analytic center of S is the unique optimal
solution of (24),

X = argmin p(z).
c€80

The analytic center was defined by Sonnevend [16]; see also McLinden [9].
Its properties and the description of the Newton primal centering algorithm
(SSD algorithm) are described in Gonzaga [3]. The following facts come from
this latter reference.
Given a point « € S?, the Newton centering direction from x is given by
h(z) = xh(z), where
E(:L‘) = —Pixe

is the centering direction after scaling the problem so that the point = is
taken to e.
The (primal) proximity of « in relation to y, defined above, is given by

§(x) = I1R(=)]| = Nh(2)lls, (25)

where || - ||, is the norm relative to .
The following important results are described for example in [3]. Let
z € S° be such that 6(z) = § < 1, then

T — s <- -.
Iz = x|l < T (26)
o(r + h(z)) < 62

The first result above gives an upper bound for ||z — x||,. We shall also need

a lower bound for this distance, and this will be provided by the next lemma.

Lemma 4.2 If 6(x) =6 < 0.5, then

1—-26
T — x| > -
b = xlle 27—

In particular, if § < 0.09, then ||z — x||. € [0.96,1.16].

d.
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Proof. Let at = x + h(x). We know that ||h(z)]|, = §, and that §(2F) <

62. Tt follows from (26) that

+ 6
fla™ — x|+ < [ _ o2
and hence
+ axt 62
IlT _X”IS o 001_62'
But 2t /2 = e + h(x)/x, and thus
ot (2
‘ I o<1+ “ hx) <146
€x &€
It follows that
+ < (1496) ¢ f
|| Xlle <(1+ 1—62 1-=4§
Finally,
le=xlle = llz = 2" +a* ~ x|,
> e —at|. — 2t — xll»
5'2
> §—
- 1 -6
1 —26
= —4.
1 —4é

The numeric values are obtained by substitution, completing the proof. &
This lemma shows that when the proximity measure is small, it is indeed a
good approximation to the actual scaled distance to the center. The values
6 < 0.09 will be quite reasonable for our analysis below.

One final technical result also will be useful below. It reproduces the

bounds above using the norm relative to .
Lemma 4.3 If 6(x) =6 < 0.1, then for a* = x + h(z),

1.0562
0.754.

[l = xlIx

<
lle = xllx =

18



Proof.

Using (26), ||zt — x|l.+ < 6%/(1 — &%), since §(z*) < 2. Using Lemma
3.4 with o = §%/(1 — &%), we obtain ||zt — x|, < 6%/(1 — 26%). The first
result in the lemma follows from this with § = 0.1.

Using Lemma 4.2, ||z — x|l > 6(1 — 26)/(1 — §). From (26), ||z — x|l <
1/(1 —é). Using Lemma 3.4 with o = 1/(1 — §), we get ||z — x|, > (1 —
a)|lz — x||»- Manipulating these expressions, we arrive at

e - xlly > (17?_3;)6

Substituting 6 = 0.1, we obtain the second result, therefore completing the
proof. |

The primal centering direction h(x) is the Newton direction for p(-) from
z, and it coincides with the steepest descent direction for = = e, i.e., k(z) is
the Cauchy direction from ¢. To see this notice that h(z) = —zPaxzVp(z) =
xPaxxaxt.

Other scalings give rise to descent directions that are in general not as
efficient as this one. We shall apply Lemma 3.3 to study the effect of slightly

shifted scalings on the descent directions.

5 The Mizuno-Todd-Ye Algorithm

The MTY algorithm is a path-following predictor-corrector algorithm. All
activity is restricted to a region near the central path, i.e., all points (z, s)
generated by the algorithm satisfy

&rs

<
pz, s) “

—_ I

— €

6(x,8) = llw(z,s) —e]| =

where « € (0,0.5).

Algorithm 5.1 Given o < 0.3, (:1:”1,.901) such that 6(:[:01,.901) < o?/V2,
k=1.

REPEAT
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Predictor: Given (x°, SU) compute the (affine-scaling) step (u?, v°), and
let z = «° + u’, s = s + v° where (u°,v°) is defined by
LUUO + 5% = —(1 —y)a",  u” € N(A), v° € R(AT),
with v € [0, l) such that (:1:,.9) is feasible and é(z,s) < a. (The
specific value of vy will be discussed below).

Corrector: Given (z, s) compute the (centering) step (u,v) and let z+ =
x + u, sT = s+ v, where (u,v) is defined by
v+ su=—as+pe, u€ N(A),veR(AT),
with g = p(z, s).

Subbeqkuent iterate:
k41
.'L'+ ‘U + = 5+

7&

k=Fk+1

UNTIL convergence.

Observe that our v in the predictor step is effectively a steplength pa-
rameter. To see this let us denote the predictor step by (u’(y),v%(y)) and
let =1 — . Then

0(u°(0),7°(0)) = (u’(v),v"())

and
(z,8) = («%,5) + 6(u(0),v°(0)) ;

which is the usual way of writing the MTY predictor step. The usual choice
for 6 is 6%, the largest 6 € (0, 1] such that §(2(6),5(6)) < aforall 0 < § < 9*.
For further detail see, for example, Section 2 of Ye, Giiler, Tapia and Zhang
[20]. Hence our choice of v in the predictor step is v = 1 — 6%, and can be
viewed as the smallest v € [0,1) in the sense just described.

From Proposition 2.1 with (Z, §) = (2%, s%), 4 = v, and /i = 0 we see that
from the predictor step we get u(x,s) = yu(z? s°). Also, from the same
proposition with (Z,3) = («,s), ¥ = 0, and & = p(z,s) we see that from
the corrector btep we get p(zt,st) = p(z,s). Hence we have p(at,st) =
px, s) = yp(a?, s%).

We now list some properties of this algorithm. Some proofs are presented
here for the sake of completeness. The proofs that are not given here can
be found in Mizuno, Todd, and Ye [14]. Mizuno, Todd, and Ye proved that
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the algorithm is well defined in the sense that the centering step produces
(zt,s%) such that §(zF,s%) < o?/V/2.

Bounds on the quantities appearing in the algorithm are given in the lem-
mas below. Let {B, N} be the optimal partition for the linear programming
problem, i.e., the index partition associated with the optimal face. As we
described in Subsection 4.1, the central path ends at the analytic center of
the optimal face, and the pairs (x,s) such that ||w(z,s) — e]| < a consti-
tute a neighborhood of the central path bounded away from the non-optimal
faces of the feasible polyhedron and correspond to a bundle of w-weighted
affine-scaling trajectories. For « small, the bundle of trajectories ends in a
compact neighborhood of the analytic center of the optimal face, and so all
the sequences generated by the algorithm are in compact sets.

Hence, the algorithm behaves as follows. As the optimal face is ap-
proached (and this happens in polynomial time), z% — 0, s& — 0 and
zk, sk stay in small neighborhoods of @%, s, the analytic centers of the
primal and dual optimal faces.

Lemma 5.1 Consider quantities generated by the MTY algorithm. Then
(1) an =0, s8=0(, O(u°) , s5=0(n)
(i) u®=0(u"), " =0( 0)

(1ir)  uy =O(u), v =0(n)

|

Proof. All of these bounds are implicit in the technical results given in
Section 3 of Ye et al. [20]. Specifically (ii) follows from Lemma 3.2 and
Theorem 3.1. The tools used there can also be used to establish (i) and (iii).
Hence we will not include a proof and direct the reader to that paper for
proofs. |

The lemma above shows that all the variations in (x,s) due to an MTY
step are bounded by O(u"), with exception of ug and vy. These are the
variations in the large variables due to the corrector step.

6 Convergence of the MTY Algorithm

In this section we establish the main result of the paper: the points generated
by the MTY algorithm always converge to the analytic center of the optimal
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face. We shall assume that the optimal face is not a single point. Our
convergence proofs will be carried out for primal solutions. The symmetric
results for dual slacks can always be proved by the same methods using the
complete symmetry of conditions (1).

We begin by studying the map that results from the algorithm. Towards
this end we describe the relationship between primal-dual pairs (2 s°) and
the result (z*,s%) of an MTY step originating at (z° s%). It is essential to
keep in mind that at this point we are not studying sequences generated by
the algorithm. We derive a lemma (a main result of the paper) on the bound-
ary behaviour of the algorithmic map for sequences with strong convergence
properties; a second lemma extends the result to nonconvergent sequences,
and provides the main convergence property of the algorithmic map*. We
then consider a sequence generated by the algorithm, and prove in Theorem
6.3 that it converges to the analytic center of the optimal face.

Consider a sequence of interior primal-dual pairs (:L'Ok,sok), and all the
quantities that would be generated by applying one MTY step from each of
these points, namely (u”k, ’I,)Uk), (xF, %), (u,o%), (217, .s+k), /I.Ok, pk = 'yk,uok,
wok, wh, ¢Ok, #*. Again, we stress the fact that presently (z°s°)¥*! is not
necessarily related to (z%,s*)¥. Recall that we are denoting the analytic
center by (z*,s*). Also the {B, N} partition of the indices {1,...,n} is the
partition associated with the optimal face of the linear program in question.
Our main interest is in measuring how the large variables approach z3. A
good metric for measuring this is given by the norm || - ||+, defined on IRIBI,
To simplify notation, we write

1Al = 1 e -

k N .
Lemma 6.1 Let (2° ,sok be such that 6(:1:Ok,sok) < 0.1, and assume that
k k | . .
p? =0, (2°,5%) - (,38), and w* — @°. We have the following
(i): If T = «*, then u* — 0 and ot

(ii): If & # x*, then for sufficiently large k,

k k
lef —apll. <082y — k..

*The reader might consider Lemma 6.2 before going through the technical proof of
Lemma 6.1.
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Proof. The proof consists of two technical parts and a conclusion. In
the first part we analyse the boundary behaviour of the MTY steps; in the
second part we describe the centering direction from Z in the optimal face.
Finally, the conclusion is reached from the comparison of the results of the
first two parts.

We begin by considering MTY steps. From Lemma 5.1, (u”k,v”k) -0
and consequently (z*,s*¥) — (Z,5). From the same lemma, uk, — 0. We
must describe the behaviour of . From (10),

qu*
Uk = —(Ifk¢kPAXk®k¢k P €].
I

We are now in a position to use Lemma 3.2 with d = x¢ and p = — (%i — e).

Our first task is to show that these two sequences converge. By hypothesis
||lw(x, s°%)—e]| < 0.1. Hence ||w(Z,5)—¢l| < 0.1. It follows that w(z,s) > 0.
We observed that (z*,s%) also converges to (#,3). This means that ¢(z*, s*)

_ -1
converges to ¢ = w(7,5)"z > 0. We have demonstrated that d* converges
- = : _ L ok gk .
to d = z$. Now, s* converges to 5 and w* = & converges to @ implies
) 1

.'ﬂk — — .

N . -—1 k e *
that —¥ converges to 5y Wy, and hence pjy converges. Since sp = 0 we see

that p% = #%. This shows that both d* and p* converge. We can now apply
Lemma 3.2 to obtain

L . _
up — up = -'[7B¢BPAX’E§>B¢B- (27)
. k k k k
Since 2t = 2 4+« +u* and u* — 0, uk — 0,

k _ _ _
7V st =% + u,

where uny = 0.
Our attention now goes to centering in the optimal face. Consider the

following primal centering direction associated with each (z°°,s""):
Ok

W= =0 P o (i—k_" - e) , (28)

pe

where s is an arbitrary dual slack (remember that dPspds = dPspds’ for
any dual slacks s, s’ and any scaling d > 0.)
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With s = sok, we see that h* = —.’L’OkPAXok(’U)Ok —¢). It follows that
hy =0 and
k ko ok
WAL < o — el = 8, s%) < 0.1,

We now consider (28) with s = s*. Lemma 3.2 with d = z% and p = —xﬁg‘ +e
can be used to determine the behaviour of A* once we demonstrate that ¢*
and p* converge. In this case d* converges by hypothesis. Moreover, an
argument similar to the one used above will show that p* converges. Hence
Lemma 3.2 applies, and so h* — h. From these latter two arguments we

have that
7”\7 = 0 R 7I,B = .'Z‘BPABXBCB a.nd “BB”:EB S 01

We conclude that h is the Newton centering direction in the optimal face,
and that the proximity measure of ¥ is

8(78) = 1Fslleg < 0.1
Let y =  + h be the result of a primal centering step. Then by Lemma 4.3,

lzg —agll- > 0.756(Zp)

= ¢
lyg — 2%l < 1.056%(zp). (29)

Our attention now turns to shifted scaling. We study the effect of the
direction up defined in (27), when it is used for primal centering instead of
k. The quantity

ip = IpdpPsx, 3,98
corresponds to hg by way of a shifted scaling. Here ¢ = 1/y/w, as usual.
Since ||@w — e|| < 0.1, it follows that for i = 1,...,n @; € [0.9,1.1] and it is
trivial to check that ¢; € [0.9,1.1]. Hence ”gg - e”oo < 0.1, and by Lemma
3.3,
Vs = fslley < 0.3

hgllzp = 0.36(%B). (30)

If z = z*, then 6(Zp) = 0 and it follows that hg = g = 0. This proves part
(i) of the lemma. Assume from here on that ||Tp — 2j|| # 0.
We need (30) in the norm || - ||.. Using (26), define
(5(?3 0.1

=\ltg —axllz, < ——— < .
@ “IB IB”B—l—‘(S(YB)_

|

e
2o
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Using Lemma 3.4,
lhp — igll. < 1TQIIEB — uBllep
Merging this and (30) with 1/(1 — a) < 1.2 we obtain
|hp — @gl|l. < 0.46(Zp). (31)

And now we compare the points yg = #p + hg and T5 = Tp + iip, using

(29). Specifically

leg —apll. < llys - aplle + 25 - vsll.

= llys — 23l + llas — ksl
1.056*(z5) + 0.48(%B)
0.516(zg).

Using (29), we conclude that

=t _ x r
HiB oyl < 0.51 <on.
lzg —ag]l« — 0.75

. . . . . k _ k _
Finally, we conclude from this expression that since 2°° — 7 and z* — 7T,
for sufficiently large k,

k k
l2f — 2|l < 0.8|las — ap]ls

completing the proof. |

The lemma above studies convergent sequences (:z:“k,s(’k). The next
lemma shows that the reduction in distance from z* can be extended uni-
formly for nonconvergent sequences.

k ok k k k
Lemma 6.2 Let (2%, s%) be such that §(z",s* ) < 0.1 and u® — 0. Then
there exists a sequence of positive reals €* such that € — 0 and for sufficiently
large k,
k * k k *
||:L'2§ — ag|l« £ max{e ,0.8||:1:% — g}



Proof. Assume by contradiction that there exists € > 0 and a subsequence

of (.I'Ok, sok) with indices K C IV such that for k € K°,

k " k k *
[t —apl > e o bt — ol > 081eY —ehl.  (32)

The sequences (mok, sok), (wok), (w") are all in compact sets by construction,
and thus there must exist a subsequence with indices X C K° such that these
three sequences are convergent in K.

In particular, ({L'Ek))c does not converge to zy, due to (32). Applying
Lemma 6.1(1), we see that (:r:”k),(; does not converge to z*, and thus (i1) must
hold for this subsequence. This contradicts (32), completing the proof.

Finally we are ready to establish our convegence result.

Theorem 6.3 Consider sequences (:I:Ok,sok), (x*,s*) generated by the MTY
algorithm. Then (:lzok,sok) — (2*,s*) and (2*
is the analytic center of the solution set.

55) = (a%,5%), where (a%,57)

Proof. We prove the result for the primal variables. The prootf for the
. . v k .
dual slacks is similar. Also, it is enough to prove that 2 — z*, since
ok ok
u’ =0p’ ) — 0.
. o :
Assume by contradiction that the sequence {2} has an accumulation
point T # x*. Since Zy = ¢ = 0, we have

o =|ltg — 5|« > 0.

Let {¢*} be the sequence guaranteed by Lemma 6.2, and let k be such that
the conclusions of that lemma are valid for ¥ > k. Choose an index j > k
such that ||z’ — 2%l < 1.1, and such that for k¥ > j, ¥ < 0.50. This

index exists because €/ — 0 and #p is an accumulation point of {.’L’%k}.

We prove by induction that for any & > j, H.’L‘UBk — gl < 0.90.
(a) HacOBj+1 — ag]l« < 0.8 x 1.16 < 0.90 by Lemma 6.2.
(b) Assume that for an index &k > j, ||:1:%k — 2|« < 0.90. Then by Lemma
6.2, |3 — 2%l < max{e*,0.8][z% — 2%} < 0.90.

(a) and (b) prove that for all k > j, ||.’L‘0Bk — 2§/« < 0.90, contradicting
the fact that o is an accumulation point of the sequence (||7,%k — 23||x), and
completing the proof. |
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